A randomized algorithm for spectral clustering

نویسندگان

  • Nicola Rebagliati
  • Alessandro Verri
چکیده

Spectral Clustering has reached a wide level of diffusion among unsupervised learning applications. Despite its practical success we believe that for a correct usage one has to face a difficult problem: given a target number of classes K the optimal K-dimensional subspace is not necessarily spanned by the first K eigenvectors of the graph Normalized Laplacian. The contribution of this paper is twofold. First, we show a bound for choosing a correct number of eigenvectors. Second, we propose a randomized spectral algorithm able to find a clustering solution. We show the efficacy of the algorithm with experiments on real world graphs. Our proposal is a scheme that naturally extends the current usage of Spectral

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Spectral Clustering via Randomized Sketching

Spectral clustering is arguably one of the most important algorithms in data mining and machine intelligence; however, its computational complexity makes it a challenge to use it for large scale data analysis. Recently, several approximation algorithms for spectral clustering have been developed in order to alleviate the relevant costs, but theoretical results are lacking. In this paper, we pre...

متن کامل

Spectral Clustering via the Power Method - Provably

Spectral clustering is arguably one of the most important algorithms in data mining and machine intelligence; however, its computational complexity makes it a challenge to use it for large scale data analysis. Recently, several approximation algorithms for spectral clustering have been developed in order to alleviate the relevant costs, but theoretical results are lacking. In this paper, we pre...

متن کامل

تجزیه‌ ی تُنُک تصاویر ابرطیفی با استفاده از یک کتابخانه‌ ی طیفی هرس شده

Spectral unmixing of hyperspectral images is one of the most important research fields  in remote sensing. Recently, the direct use of spectral libraries in spectral unmixing is on increase. In this way  which is called sparse unmixing, we do not need an endmember extraction algorithm and the number determination of endmembers priori. Since spectral libraries usually contain highly correlated s...

متن کامل

Weighted Ensemble Clustering for Increasing the Accuracy of the Final Clustering

Clustering algorithms are highly dependent on different factors such as the number of clusters, the specific clustering algorithm, and the used distance measure. Inspired from ensemble classification, one approach to reduce the effect of these factors on the final clustering is ensemble clustering. Since weighting the base classifiers has been a successful idea in ensemble classification, in th...

متن کامل

Improved COA with Chaotic Initialization and Intelligent Migration for Data Clustering

A well-known clustering algorithm is K-means. This algorithm, besides advantages such as high speed and ease of employment, suffers from the problem of local optima. In order to overcome this problem, a lot of studies have been done in clustering. This paper presents a hybrid Extended Cuckoo Optimization Algorithm (ECOA) and K-means (K), which is called ECOA-K. The COA algorithm has advantages ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010